broken image
broken image

 

  • Home
  • Who we are 
    • About AEii
    • AEii Structure
    • Board of Directors
  • What we do 
    • Sections
    • Conferences
    • Awards
    • Energy Visions
    • Energy Proceedings 
    • EnerarXiv
    • Summer School
  • News
  • Members 
    • Membership
  • …  
    • Home
    • Who we are 
      • About AEii
      • AEii Structure
      • Board of Directors
    • What we do 
      • Sections
      • Conferences
      • Awards
      • Energy Visions
      • Energy Proceedings 
      • EnerarXiv
      • Summer School
    • News
    • Members 
      • Membership
    • Login
broken image
broken image

 

  • Home
  • Who we are 
    • About AEii
    • AEii Structure
    • Board of Directors
  • What we do 
    • Sections
    • Conferences
    • Awards
    • Energy Visions
    • Energy Proceedings 
    • EnerarXiv
    • Summer School
  • News
  • Members 
    • Membership
  • …  
    • Home
    • Who we are 
      • About AEii
      • AEii Structure
      • Board of Directors
    • What we do 
      • Sections
      • Conferences
      • Awards
      • Energy Visions
      • Energy Proceedings 
      • EnerarXiv
      • Summer School
    • News
    • Members 
      • Membership
    • Login
broken image

Energy Visions 7th Seminar

 

· Conducted Events
broken image

 YOUNG SCIENTIST LECTURE

broken image

Speaker: MR. Stefan Borozan

Title: Strategic network expansion planning with electric vehicle smart charging concepts as investment options

Speaker bio : Stefan Borozan is a doctoral researcher in the Control and Power Group at Imperial College London. His research covers power system planning under uncertainty, with a focus on multi-stage stochastic optimization approaches for decision-making and the modelling of smart technologies, for a secure and cost-effective transition to net-zero.

Supporting institution: Imperial College London, Mälardalen University

ADAPEN paper link: https://doi.org/10.1016/j.adapen.2021.100077

Abstract: The electrification of transport seems inevitable as part of global decarbonization efforts, but power system integration of electric vehicles faces numerous challenges, including a disproportionately high demand peak necessitating expensive infrastructure investments. However, long-term developments in the power sector are characterized by great uncertainty, which increases the risk of making incorrect investment decisions leading to stranded costs. A cost-effective system integration of electrified transport would therefore not be possible without the implementation of smart charging concepts in combination with strategic network expansion planning that considers the impact of uncertainties. This paper proposes investment and operation models of Grid-to-Vehicle (G2V), Vehicle-to-Grid (V2G), and Vehicle-to-Building (V2B) for the large-scale and long-term network expansion planning problem under multi-dimensional uncertainty. Additionally, it presents a multi-stage stochastic planning framework that can identify optimal investment strategies that minimize the expected system cost and reduce the risk of stranded investments. The results of the case studies highlight G2V, V2G and V2B as effective non-network alternatives to conventional reinforcement that could generate substantial economic savings and act as hedging instruments against uncertainty. For the case of Great Britain, the Option Values of G2V, V2G, and V2B could amount to £1.2bn, £10.8bn, and £10.1bn, respectively, over a 40-year horizon. Although the quantified values are system-specific, the paper presents key observations on the role of smart charging concepts as investment options that can be generalized for any low-carbon power system.

 

 

Previous
Energy Visions 6th Seminar
Next
Energy Visions 8th Seminar
 Return to site
Cookie Use
We use cookies to improve browsing experience, security, and data collection. By accepting, you agree to the use of cookies for advertising and analytics. You can change your cookie settings at any time. Learn More
Accept all
Settings
Decline All
Cookie Settings
Necessary Cookies
These cookies enable core functionality such as security, network management, and accessibility. These cookies can’t be switched off.
Analytics Cookies
These cookies help us better understand how visitors interact with our website and help us discover errors.
Preferences Cookies
These cookies allow the website to remember choices you've made to provide enhanced functionality and personalization.
Save